‎ Enhancing the travel comfort of quarter-car model using fractional order terminal ‎sliding mode controller

S. Rajendiran, P. Lakshmi, B. Rajkumar


The active suspension system used in a car model is beneficial to reduce the vibration of the vehicle and enhance the ‎travel comfort. Different types of conventional and intelligent control strategies have been proposed for 2 Degree of ‎Freedom (DOF) quarter car model. In this paper, travel comfort of the passenger is analyzed by designing and simulating the ‎Terminal Sliding Mode Controller (TSMC), Fractional order Sliding Mode Controller (FSMC) and Fractional order Terminal ‎Sliding Mode Controller (FTSMC) for a quarter car model. These controllers are designed for the perturbed condition of the ‎system dynamics and tested for the normal condition. While testing the performance of the controllers, the system is ‎subjected to three types of road disturbance individually. The responses are compared with each other along with the passive ‎system. The results show that FTSMC reduced the vibration more than the FSMC, TSMC, and passive system. Therefore, the ‎minimum vibration due to the FTSMC enhances the travel comfort.

Full Text:



‎[1]‎ Gysen BLJ, Van der Sande TPJ, Paulides JJH, Lo-‎monova EA. Efficiency of a Regenerative Direct-Drive ‎Electromagnetic Active Suspension, IEEE ‎Transactions on Vehicular Technology 2011; 60(4): ‎‎1384-1393. ‎

‎[2]‎ Kalaivani R., Lakshmi P. Vibration control of ‎vehicle active suspension system using novel fuzzy ‎logic controller, International Journal of Enterprise ‎Network Management 2014; 6(2): 139-152. ‎

‎[3]‎ Rajeswari K, Lakshmi P. Vibration control of me-‎chanical suspension system, International Journal of ‎Instrumentation Technology 2011; 1:60-71.‎

‎[4]‎ Aly AA, Salem FA. Vehicle Suspension Systems ‎Control: A Review, International journal of control, ‎automation and systems 2013: 2(2): 46-54.‎

‎[5]‎ Kalaivani R, Lakshmi P. Biogeography-Based Opti-‎mization of PID Tuning Parameters for the Vibration ‎Control of Active Suspension System. Control ‎Engineering and Applied Informatics 2014; 16(1): 31-‎‎39.‎

‎[6]‎ Choi SB, Han YM. Vibration control of electrorheo-‎logical seat suspension with human-body model using ‎sliding mode control, Journal of Sound Vibrations ‎‎2007; 303, 1(2); 391–404. ‎

‎[7]‎ Rajeswari K, Lavanya S, Lakshmi P. Grey Fuzzy ‎sliding Mode controller for Vehicle Suspension System, ‎Control Engineering and Applied Informatics 2015; ‎‎17(3): 12-19. ‎

‎[8]‎ Kalaivani R., P. Lakshmi and K. Rajeswari, (2015). ‎An improved type-2 fuzzy logic approach based sliding ‎mode controller for vehicle active suspension system, ‎Journal of Vibration Engineering & Technologies, ‎volume 14, no.4, pp. 431-446.‎

‎[9]‎ Aly AA. Robust Sliding Mode Fuzzy Control of a ‎Car Suspension System, International Journal of ‎Information Technology and Computer Science ‎‎2013;8:46-53.‎

‎[10]‎ Chen HY, Huang SJ. A new model-free adaptive ‎sliding controller for active suspension system, ‎International Journal of Systems Science 2008; 39(1): ‎‎57–69.‎

‎[11]‎ Alvarez-Sánchez E. A quarter-car suspension ‎system: car body mass estimator and sliding mode ‎control, Conference on Electronics Engineering and ‎Computer Science, Procedia Technology 2013;7: 208 ‎‎– 214.‎

‎[12]‎ Long Y, Li L. Fuzzy Fractional Order Sliding Mode ‎Control for Automatic Clutch of Vehicle AMT, ‎International Journal of Smart Home 2015; 9(2): 53-‎‎68.‎

‎[13]‎ Tang Y, Zhang X, Zhang D, Zhao G, Guan X. Frac-‎tional order sliding mode controller design for antilock ‎braking systems, Neurocomputing 2013; 11: 122–130. ‎

‎[14]‎ Huang J, Li H, Chen YQ, Xu Q. Robust Position ‎Control of PMSM Using Fractional-Order Sliding Mode ‎Controller, Abstract and Applied Analysis 2012:33.‎

‎[15]‎ Valerio DIntroducing Fractional Sliding Mode Con-‎trol, II Encontro de Jovens Investigadores do Laeta ‎Feup 2012: 10–11. ‎

‎[16]‎ Onder M. Fractional order sliding mode control with ‎reaching law approach, Turk Journal of Electrical ‎Engineeirng & Computer Science 2010; 18(5): 731-‎‎747. ‎

‎[17]‎ Tra MD, Kang HJ. Non-singular Terminal Sliding ‎Mode Control of Uncertain Second-Order Nonlinear ‎Systems, Mathematical Problems in Engineering ‎‎2015; 8. ‎

‎[18]‎ Chen M, Wu QX, Cui RX. Terminal sliding mode ‎tracking control for a class of SISO uncertain nonlinear ‎systems, ISA Transactions2013; 52(2): 198–206.‎

‎[19]‎ Zhihong M, Yu XH. Terminal Sliding Mode Control ‎of MIMO Linear Systems, IEEE transactions on ‎circuits and systems—I: Fundamental Theory and ‎Applications 1997; 44(11): 1065-1070. ‎

‎[20]‎ Lee JD, Kho S, Lai KY. Terminal Sliding Mode Con-‎trol Strategy Design for Second-order Nonlinear System, ‎‎38th Annual Conference on IEEE Industrial ‎Electronics Society 2012.‎

‎[21]‎ Dadras S, Momeni HR. Fractional terminal sliding ‎mode control design for a class of dynamical systems ‎with uncertainty, Commun Nonlinear Sci Numer ‎Simulat 2012;17: 367–37.‎

‎[22]‎ Slotine JE, Li W. Applied Nonlinear Control, Pren-‎tice Hall, 1991, USA.‎

‎[23]‎ Liu J, Wang X. Advanced Sliding Mode Control for ‎Mechanical Systems, Tsinghua University Press, ‎Beijing and Springer-Verlag. 2011. ‎

‎[24]‎ Edwards C, Sarah K. Sliding Mode Control Theory ‎and Applications, Taylor and Francis. 1998.‎

‎[25]‎ Chen PC, Huang AC. Adaptive sliding control of ‎non-autonomous active suspension systems with time-‎varying loadings, Journal of Sound and Vibration, ‎‎2005;282: 1119–1135.‎

‎[26]‎ Lin TC, Lee TY, Balas VE. Adaptive fuzzy sliding ‎mode control for synchronization of uncertain ‎fractional order chaotic systems, Chaos, Solitons & ‎Fractals, 2011; 44:791-801, ‎

‎[27]‎ Delavari H, Ghaderi R, Ranjbar A, Momani S. Fuzzy ‎fractional order sliding mode controller for nonlinear ‎systems, Commun Nonlinear Sci Numer Simulat ‎‎2010;15: 963–978.‎

‎[28]‎ Ullah N, Shaopingb W, Khattak MI, Shafid M. Frac-‎tional order adaptive fuzzy sliding mode controller for ‎a position servo system subjected to aerodynamic ‎loading and nonlinearities, Aerospace Science and ‎Technology 2015; 44: 381-387.‎

‎[29]‎ Rajendiran S, Lakshmi P, Rajkumar B. Reduction of ‎Body Acceleration in the Quarter Car Model using ‎Fractional order Fuzzy Sliding Mode Controller. ‎International Journal of Vehicle Structures & Systems ‎‎2017; 9(2).‎

‎[30]‎ Rajendiran S, Lakshmi P. Simulation of PID and ‎fuzzy logic controller for integrated seat suspension of ‎a quarter-car with driver model for different road ‎profiles. Journal of Mechanical Science and ‎Technology 2016; 30(10): 4565-4570.‎

‎[31]‎ Rajendiran S, Lakshmi P, Rajkumar B. Fractional or-‎der fuzzy sliding mode controller for the quarter car ‎with driver model and dual actuators. IET Electrical ‎Systems in Transportation 2016; 7(2):145-153.‎

‎[32]‎ Rajendiran S, Lakshmi P, Rajkumar B. Enhancing ‎Travel Comfort of Quarter Car with Driver Model using ‎Fractional Order Terminal Sliding Mode Controller with ‎Dual actuators. Journal of electrical Engineering ‎‎16(4); 203-214.‎


  • There are currently no refbacks.